Catechol-O-Methyltransferase (COMT) and Treatment Response to Meditation and Group Therapy in Veterans with PTSD

Libin Y Saidd, Adam M Leed, Seenan Eumd, Paul D Thurasd, Christopher R Erbed, Melissa A Polusnyd, Gregory J Lambertyd, Kelvin O Limd, Jeffrey R Bishopd
1. Department of Experimental and Clinical Pharmacology, University of Minnesota 2. Department of Psychiatry, University of Minnesota 3. Minneapolis Veterans Affairs Health System, Minneapolis MN

Introduction
• Post-traumatic stress disorder is a chronic and debilitating psychiatric disorder that affects 30% of veterans and 8% of the US population.1
• Approximately 28-49%2 of veterans with PTSD display improvement in PTSD symptoms when treated with non-pharmacologic treatment interventions such as:
 → Mindfulness Based Stress Reduction (MBSR)
 → Transcendental Meditation (TM)
 → Present-Centered Group Therapy (PCGT)
• Catechol-O-methyltransferase (COMT) enzyme catabolizes dopamine and norepinephrine, which regulate mood and anxiety.
• The rs4680 (Val158Met) polymorphism alters the enzyme's structure resulting in reduced activity that is only 25% of the wild type.3
• The Val158Met polymorphism has been associated with PTSD risk, however its influence on treatment outcome is unknown.

Project Aim: Assess the relationships between the Val158Met polymorphism, symptom severity and treatment response in veterans receiving non-pharmacological treatments.

Methods
Study Population: The study cohort utilized participants (n=120) obtained from a previously conducted randomized clinical trial.4 Inclusion criteria included: diagnosis of PTSD and on a stable medication regiment in PTSD treatments.

Genotyping: The COMT Val158Met polymorphism genotyping was performed on blood-derived DNA by a TaqMan Genotyping assay (Life Technologies) analyzed on the Applied Biosystems 7500 Real Time PCR system.

Statistical Analysis: Primary clinical outcomes were MBSR cohort (PCL) baseline and week nine scores; and early childhood/lifetime trauma occurrences. ANOVA, T-test, and Chi-Squared tests were used to test for associations.

Table 1: Study Cohort Demographics and Summary Data

<table>
<thead>
<tr>
<th>Variable</th>
<th>MBSR 7TM</th>
<th>N=71</th>
<th>%</th>
<th>N=120</th>
<th>%</th>
<th>N=49</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>57</td>
<td>80.2</td>
<td>44</td>
<td>89.8</td>
<td>101</td>
<td>84.2</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td>Caucasian</td>
<td>59</td>
<td>83.1</td>
<td>43</td>
<td>87.8</td>
<td>102</td>
<td>85.0</td>
</tr>
<tr>
<td>Other</td>
<td>12</td>
<td>16.9</td>
<td>6</td>
<td>12.2</td>
<td>18</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>59.4</td>
<td>10.7</td>
<td>58.6</td>
<td>9.9</td>
<td>58.7</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td>PCL Total Score</td>
<td>63.0</td>
<td>10.3</td>
<td>57.4</td>
<td>13.0</td>
<td>60.8</td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td>PCL Total Change (Week 9)</td>
<td>-9.4</td>
<td>12.4</td>
<td>-2.9</td>
<td>10.1</td>
<td>-6.4</td>
<td>11.52</td>
<td></td>
</tr>
<tr>
<td>PCL subset scores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCL Re-experiencing Baseline</td>
<td>17.8</td>
<td>4.38</td>
<td>15.9</td>
<td>4.25</td>
<td>17.1</td>
<td>4.37</td>
<td></td>
</tr>
<tr>
<td>PCL Re-experiencing change (Week 9)</td>
<td>-2.11</td>
<td>4.47</td>
<td>-0.84</td>
<td>3.72</td>
<td>-1.60</td>
<td>4.11</td>
<td></td>
</tr>
<tr>
<td>PCL Arousal Baseline</td>
<td>19.1</td>
<td>3.69</td>
<td>17.9</td>
<td>3.85</td>
<td>18.6</td>
<td>3.89</td>
<td></td>
</tr>
<tr>
<td>PCL Arousal Change (Week 9)</td>
<td>-2.82</td>
<td>4.39</td>
<td>-0.75</td>
<td>3.40</td>
<td>-1.86</td>
<td>4.09</td>
<td></td>
</tr>
<tr>
<td>PCL Avoidance Baseline</td>
<td>26.0</td>
<td>4.40</td>
<td>23.5</td>
<td>7.02</td>
<td>25.0</td>
<td>5.24</td>
<td></td>
</tr>
<tr>
<td>PCL Avoidance Change (Week 9)</td>
<td>-4.85</td>
<td>5.07</td>
<td>-1.37</td>
<td>4.81</td>
<td>-3.27</td>
<td>5.17</td>
<td></td>
</tr>
<tr>
<td>Week 9 Responder</td>
<td>31</td>
<td>43.6</td>
<td>11</td>
<td>22.4</td>
<td>42</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>Childhood Trauma</td>
<td>31</td>
<td>43.6</td>
<td>18</td>
<td>42.9</td>
<td>49</td>
<td>40.8</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: COMT Val158Met genotyping by allelic discrimination using TaqMan fluorescence probes

Figure 2: The COMT Gene

Figure 3: Baseline PCL total scores by COMT genotype across participants with or without evidence of childhood trauma

Prior to the treatment intervention, participants with childhood trauma (n=49) who were Met158 carriers exhibited higher baseline PCL total scores (95%CI [-17.276, -0.935]). No differences in baseline PCL total scores were observed in participants without evidence of childhood trauma (n=71).

Figure 4: Baseline re-experiencing symptoms sub-test scores by COMT genotype across participants with or without evidence of childhood trauma

Primary Findings
- We identified a significant relationship between the reduced activity 158Met allele and increased PTSD re-experiencing symptoms in patients with childhood trauma.
- This indicates that dysregulated dopamine or norepinephrine signaling may be involved with mechanisms related to specific symptoms related to re-experiencing those events later in life. COMT genotypes were not associated with response to the treatments examined herein.

Conclusion/Discussion
Underlying the relationship between how genetics can influence PTSD symptom severity and treatment response to certain interventions can help us discover better more effective genetically-tailored treatment options for people with PTSD.

Strength: Longitudinal data from carefully controlled trials provides a unique opportunity to examine genetic relationships with PTSD treatment outcomes.

Weakness: Future studies in larger cohorts are necessary in order to validate potential gene x environment interactions between COMT Val158Met and childhood trauma on PTSD symptom severity.

Translation
Clinical Implication: Identifying potential genetic biomarkers of symptom severity and treatment response may help clinicians improve treatment strategies for patients with PTSD.

Ethical Considerations: Lack of representation in study cohort; potential for discrimination; patient privacy.

Key Stakeholders: Veterans with PTSD and their families; clinicians; PTSD treatment centers; and genetic testing companies.

Acknowledgments
This research was supported by the National Institutes of Health's National Center for Advancing Translational Sciences, grant UL1TR002494. The study cohort utilized participants from a previously conducted randomized clinical trial. Portions of this study were supported with resources and use of facilities at the Minneapolis VA Health Care System and the University of Minnesota, Minneapolis, Minnesota. This research was supported by VA grant I01BX003808 to Dr. Bishop.

References
1. US Department of Veterans Affairs. PTSD: National Center for PTSD. Public. 2007; 3-4
3. Rs4680. Rs12913832 – SNPedia
4. 2015;314(5):456–465