Carolyn Fairbanks, PhD

Associate Dean for Research and Graduate Education, College of Pharmacy

Carolyn Fairbanks

Contact Info

carfair@umn.edu

Office Phone 612-625-2945

Office Address:
7-101 Weaver-Densford Hall

Mailing Address:
University of Minnesota
College of Pharmacy
Department of Pharmaceutics
9-177 Weaver-Densford Hall
308 Harvard St. SE
Minneapolis, MN 55455
USA

Associate Dean for Research and Graduate Education, College of Pharmacy

Professor, Department of Pharmaceutics

Faculty, MS and PhD Programs in Pharmacology


PhD in Pharmacology, University of Minnesota

Bachelor of Biology, Macalester College

Research

Research Summary/Interests

The spinal cord carries pain signals to the brain via excitatory neurotransmission and contains most of the same inhibitory neurotransmission systems as the brain. Spinal delivery of analgesics that activate such inhibitory systems offers a very selective method of pain control that can increase the therapeutic index of such analgesics by reducing or eliminating their exposure to brain regions that mediate undesired side effects.

Dr. Carolyn Fairbanks’ research focuses on development of novel compounds with a pharmacokinetic/dynamic profile ideal for spinal delivery for pain relief. One major focus is the continued characterization and clinical translation of a new compound, moxonidine, as well as its corresponding target, the alpha2C adrenergic receptor. The spinal cord contains alpha2C adrenergic receptors on intrinsic spinal neurons which, when activated by agonists such as moxonidine, inhibit action potentials that transmit the pain signal from the periphery to the brain. Dr. Fairbanks’ studies of moxonidine have used methods that incorporate the use of transgenic mice, antisense oligonucleotides and immunocytochemistry.

A second interest of Dr. Fairbanks’ team includes understanding the basic spinal neural mechanisms (glutamate-induced plasticity) governing induction chronic pain as well as opioid-induced tolerance and addiction. Her laboratory currently researches the role of an endogenous amine, agmatine (decarboxylated arginine), in those biological events. Studies of glutamatergic and agmatinergic neurotransmission in the spinal cord apply behavioral, biochemical, immunocytochemical and molecular techniques. Acquiring such information may lead to the development of a novel class of spinally delivered drugs intended for reversing (rather than alleviating) the effects of chronic pain.

Publications

Larson, CM, Wilcox, GL, Fairbanks, CA 2019, ‘Defining and Managing Pain in Stroke and Traumatic Brain Injury Research’ Comp Med, vol. 69, no. 6, pp. 510-519. https://doi.org/10.30802/AALAS-CM-19-000099

Larson, CM, Wilcox, GL & Fairbanks, CA 2019, ‘The Study of Pain in Rats and Mice’ Comp Med, vol. 69, no. 6, pp. 555-570. https://doi.org/10.30802/AALAS-CM-19-000062

Bruce, DJ, Peterson, CD, Kitto, KF, Akgün, E, Lazzaroni, S, Portoghese, PS, Fairbanks, CA & Wilcox, GL 2019, ‘Combination of a ?-opioid Receptor Agonist and Loperamide Produces Peripherally-mediated Analgesic Synergy in Mice’ Anesthesiology, vol. 131, no. 3, pp. 649-663. https://doi.org/10.1097/ALN.0000000000002840

Gore, R, Riedl, MS, Kitto, KF, Fairbanks, CA & Vulchanova, L 2019, ‘AAV-Mediated Gene Delivery to the Enteric Nervous System by Intracolonic Injection’ Methods Mol Biol, vol. 1950, pp. 407-415. https://doi.org/10.1007/978-1-4939-9139-6_24

Peterson, CD, Skorput, AGJ, Kitto, KF, Wilcox, GL, Vulchanova, L & Fairbanks, CA 2019, ‘AAV-Mediated Gene Delivery to the Spinal Cord by Intrathecal Injection’ Methods Mol Biol, vol. 1950, pp.199-207. https://doi.org/10.1007/978-1-4939-9139-6_11

Pflepsen, KR, Peterson, CD, Kitto, KF, Vulchanova, L, Wilcox, GL & Fairbanks, CA 2019, ‘Detailed Method for Intrathecal Delivery of Gene Therapeutics by Direct Lumbar Puncture in Mice’ Methods Mol Biol, vol. 1937, pp. 305-312. https://doi.org/10.1007/978-1-4939-9065-8_20

Waataja, JJ, Peterson, CD, Verma, H, Goracke-Postle, CJ, Séguéla, P, Delpire, E, Wilcox, GL & Fairbanks, CA 2019, ‘Agmatine preferentially antagonizes GluN2B-containing N-methyl-d-aspartate receptors in spinal cord’ J Neurophysiol, vol. 121, no. 2, pp. 662-671. https://doi.org/10.1152/jn.00172.2018

Skorput, AGJ, Zhang, X, Waataja, JJ, Peterson, CD, Riedl, MS, Kitto, KF, Truong, H, Huffman, C, Salton, SR, Fairbanks, CA, Honda, CN & Vulchanova, L 2018, ‘Involvement of the VGF-derived peptide TLQP-62 in nerve injury-induced hypersensitivity and spinal neuroplasticity’ Pain, vol. 159, no. 9, pp. 1802-1813. https://doi.org/10.1097/j.pain.0000000000001277

Peterson, CD, Kitto, KF, Akgün, E, Lunzer, MM, Riedl, MS, Vulchanova, L, Wilcox, GL, Portoghese, PS & Fairbanks, CA 2017, ‘Bivalent ligand that activates mu opioid receptor and antagonizes mGluR5 receptor reduces neuropathic pain in mice’ Pain, vol. 158, no. 12, pp. 2431-2441. https://doi.org/10.1097/j.pain.0000000000001050

Doolen, S, Cook, J, Riedl, M, Kitto, K, Kohsaka, S, Honda, CN, Fairbanks, CA, Taylor, BK & Vulchanova, L 2017, ‘Complement 3a receptor in dorsal horn microglia mediates pronociceptive neuropeptide signaling’ Glia, vol. 65, no. 12, pp. 1976-1989. https://doi.org/10.1002/glia.23208

Teaching

Courses

NSC/PHM/MVB 8481: Advanced Neuropharmaceutics (Fall semester)